On optimal probing for delay and loss measurement

  • Authors:
  • Francois Baccelli;Sridhar Machiraju;Darryl Veitch;Jean C. Bolot

  • Affiliations:
  • Ecole Normale Supérieure, Paris, France;Sprint, Burlingame, CA;University of Melbourne, Melbourne, Australia;Sprint, Burlingame, CA

  • Venue:
  • Proceedings of the 7th ACM SIGCOMM conference on Internet measurement
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Packet delay and loss are two fundamental measures of performance. Using active probing to measure delay and loss typically involves sending Poisson probes, on the basis of the PASTA property (Poisson Arrivals See Time Averages), which ensures that Poisson probing yields unbiased estimates. Recent work, however, has questioned the utility of PASTA for probing and shown that, for delay measurements, i) a wide variety of processes other than Poisson can be used to probe with zero bias and ii) Poisson probing does not necessarily minimize the variance of delay estimates. In this paper, we determine optimal probing processes that minimize the mean-square error of measurement estimates for both delay and loss. Our contributions are twofold. First, we show that a family of probing processes, specifically Gamma renewal probing processes, has optimal properties in terms of bias and variance. The optimality result is general, and only assumes that the target process we seek to optimally measure via probing, such as a loss or delay process, has a convex auto-covariance function. Second, we use empirical datasets to demonstrate the applicability of our results in practice, specifically to show that the convexity condition holds true and that Gamma probing is indeed superior to Poisson probing. Together, these results lead to explicit guidelines on designing the best probe streams for both delay and loss estimation.