A new metric for robustness with application to job scheduling

  • Authors:
  • D. England;J. Weissman;Jayashree Sadagopan

  • Affiliations:
  • Dept. of Comput. Sci. & Eng., Minnesota Univ., Twin Cities, MN, USA;Dept. of Comput. Sci. & Eng., Minnesota Univ., Twin Cities, MN, USA;Dept. of Comput. Sci. & Eng., Minnesota Univ., Twin Cities, MN, USA

  • Venue:
  • HPDC '05 Proceedings of the High Performance Distributed Computing, 2005. HPDC-14. Proceedings. 14th IEEE International Symposium
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Scheduling strategies for parallel and distributed computing have mostly been oriented toward performance, while striving to achieve some notion of fairness. With the increase in size, complexity, and heterogeneity of today's computing environments, we argue that, in addition to performance metrics, scheduling algorithms should be designed for robustness. That is, they should have the ability to maintain performance under a wide variety of operating conditions. Although robustness is easy to define, there are no widely used metrics for this property. To this end, we present a methodology for characterizing and measuring the robustness of a system to a specific disturbance. The methodology is easily applied to many types of computing systems and it does not require sophisticated mathematical models. To illustrate its use, we show three applications of our technique to job scheduling; one supporting a previous result with respect to backfilling, one examining overload control in a streaming video server, and one comparing two different scheduling strategies for a distributed network service. The last example also demonstrates how consideration of robustness leads to better system design as we were able to devise a new and effective scheduling heuristic.