A versatile propagation channel simulator for MIMO link level simulation

  • Authors:
  • Jean-Marc Conrat;Patrice Pajusco

  • Affiliations:
  • France Telecom, Belfort Cedex, France;France Telecom, Belfort Cedex, France

  • Venue:
  • EURASIP Journal on Wireless Communications and Networking
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a propagation channel simulator for polarized bidirectional wideband propagation channels. The generic channel model implemented in the simulator is a set of rays described by geometrical and propagation features such as the delay, 3D direction at the base station and mobile station and the polarization matrix. Thus, most of the wideband channel models including tapped delay line models, tap directional models, scatterer or geometrical models, ray-tracing or ray-launching results can be simulated. The simulator is composed of two major parts: firstly the channel complex impulse responses (CIR) generation and secondly the channel filtering. CIRs (or CIR matrices for MIMO configurations) are processed by specifying a propagation model, an antenna array configuration, a mobile direction, and a spatial sampling factor. For each sensor, independent arbitrary 3D vectorial antenna patterns can be defined. The channel filtering is based on the overlap-and-add method. The time-efficiency and parameterization of this method are discussed with realistic simulation setups. The global processing time for the CIR generation and the channel filtering is also evaluated for realistic configuration. A simulation example based on a bidirectional wideband channel model in urban environments illustrates the usefulness of the simulator.