Fast data anonymization with low information loss

  • Authors:
  • Gabriel Ghinita;Panagiotis Karras;Panos Kalnis;Nikos Mamoulis

  • Affiliations:
  • National University of Singapor;University of Hong Kong;National University of Singapor;University of Hong Kong

  • Venue:
  • VLDB '07 Proceedings of the 33rd international conference on Very large data bases
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Recent research studied the problem of publishing microdata without revealing sensitive information, leading to the privacy preserving paradigms of k-anonymity and l-diversity. k-anonymity protects against the identification of an individual's record. l-diversity, in addition, safeguards against the association of an individual with specific sensitive information. However, existing approaches suffer from at least one of the following drawbacks: (i) The information loss metrics are counter-intuitive and fail to capture data inaccuracies inflicted for the sake of privacy. (ii) l-diversity is solved by techniques developed for the simpler k-anonymity problem, which introduces unnecessary inaccuracies. (iii) The anonymization process is inefficient in terms of computation and I/O cost. In this paper we propose a framework for efficient privacy preservation that addresses these deficiencies. First, we focus on one-dimensional (i.e., single attribute) quasi-identifiers, and study the properties of optimal solutions for k-anonymity and l-diversity, based on meaningful information loss metrics. Guided by these properties, we develop efficient heuristics to solve the one-dimensional problems in linear time. Finally, we generalize our solutions to multi-dimensional quasi-identifiers using space-mapping techniques. Extensive experimental evaluation shows that our techniques clearly outperform the state-of-the-art, in terms of execution time and information loss.