Reverse link outage probabilities of multicarrier CDMA systems with beamforming in the presence of carrier frequency offset

  • Authors:
  • Xiaoyu Hu;Yu-Dong Yao

  • Affiliations:
  • Wireless Information System Engineering Laboratory (WISELAB), Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ;Wireless Information System Engineering Laboratory (WISELAB), Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ

  • Venue:
  • EURASIP Journal on Wireless Communications and Networking - Multicarrier Systems
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

The outage probability of reverse link multicarrier (MC) code-division multiple access (CDMA) systems with beamforming in the presence of carrier frequency offset (CFO) is studied. A conventional uniform linear array (ULA) beamformer is utilized. An independent Nakagami fading channel is assumed for each subcarrier of all users. The outage probability is first investigated under a scenario where perfect beamforming is assumed. A closed form expression of the outage probability is derived. The impact of different types of beamforming impairments on the outage probability is then evaluated, including direction-of-arrival (DOA) estimation errors, angle spreads, and mutual couplings. Numerical results show that the outage probability improves significantly as the number of antenna elements increases. The effect of CFO on the outage probability is reduced significantly when the beam-forming technique is employed. Also, it is seen that small beamforming impairments (DOA estimation errors and angle spreads) only affect the outage probability very slightly, and the mutual coupling between adjacent antenna elements does not affect the outage probability noticeably.