Beyond the arithmetic constraint: depth-optimal mapping of logic chains in LUT-based FPGAs

  • Authors:
  • Michael T. Frederick;Arun K. Somani

  • Affiliations:
  • Iowa State University, Ames, IA;Iowa State University, Ames, IA

  • Venue:
  • Proceedings of the 16th international ACM/SIGDA symposium on Field programmable gate arrays
  • Year:
  • 2008

Quantified Score

Hi-index 0.01

Visualization

Abstract

Look-up table based FPGAs have migrated from a niche technology for design prototyping to a valuable end-product component and, in some cases, a replacement for general purpose processors and ASICs alike. One way architects have bridged the performance gap between FPGAs and ASICs is through the inclusion of specialized components such as multipliers, RAM modules, and microcontrollers. Another dedicated structure that has become standard in reconfigurable fabrics is the arithmetic carry chain. Currently, it is only used to map arithmetic operations as identified by HDL macros. For non-arithmetic operations, it is an idle but potentially powerful resource This work presents ChainMap, a polynomial-time delay-optimal technology mapping algorithm for the creation of generic logic chains in LUT-based FPGAs. ChainMap requires no HDL macros be preserved through the design flow. It creates logic chains, both arithmetic and non-arithmetic, in an arbitrary Boolean network whenever depth increasing nodes are encountered. Use of the chain is not reserved for arithmetic, but rather any set of gates exhibiting similar characteristics. By using the carry chain as a generic, near zero-delay adjacent cell interconnection structure an average optimal speedup of 1.4x is revealed, and an average relaxed speedup of 1.25x can be realized simultaneously with a 0.95x LUT utilization decrease