On the strong p-Helly property

  • Authors:
  • Mitre C. Dourado;Fábio Protti;Jayme L. Szwarcfiter

  • Affiliations:
  • COPPE - Sistemas, Brazil;IM, NCE, Universidade Federal do Rio de Janeiro, Caixa Postal 2324, 20001-970, Brazil;COPPE - Sistemas, Brazil and IM, NCE, Universidade Federal do Rio de Janeiro, Caixa Postal 2324, 20001-970, Brazil

  • Venue:
  • Discrete Applied Mathematics
  • Year:
  • 2008

Quantified Score

Hi-index 0.04

Visualization

Abstract

The notion of strong p-Helly hypergraphs was introduced by Golumbic and Jamison in 1985 [M.C. Golumbic, R.E. Jamison, The edge intersection graphs of paths in a tree, J. Combin. Theory Ser. B 38 (1985) 8-22]. Independently, other authors [A. Bretto, S. Ubeda, J. Zerovnik, A polynomial algorithm for the strong Helly property. Inform. Process. Lett. 81 (2002) 55-57, E. Prisner, Hereditary clique-Helly graphs, J. Combin. Math. Combin. Comput. 14 (1993) 216-220, W.D. Wallis, Guo-Hui Zhang, On maximal clique irreducible graphs. J. Combin. Math. Combin. Comput. 8 (1990) 187-193.] have also considered the strong Helly property in other contexts. In this paper, we characterize strong p-Helly hypergraphs. This characterization leads to an algorithm for recognizing such hypergraphs, which terminates within polynomial time whenever p is fixed. In contrast, we show that the recognition problem is co-NP-complete, for arbitrary p. Further, we apply the concept of strong p-Helly hypergraphs to the cliques of a graph, leading to the class of strong p-clique-Helly graphs. For p=2, this class is equivalent to that of hereditary clique-Helly graphs [E. Prisner, Hereditary clique-Helly graphs, J. Combin. Math. Combin. Comput. 14 (1993) 216-220]. We describe a characterization for this class and obtain an algorithm for recognizing such graphs. Again, the algorithm has polynomial-time complexity for p fixed, and we show the corresponding recognition problem to be NP-hard, for arbitrary p.