Extending stability beyond CPU millennium: a micron-scale atomistic simulation of Kelvin-Helmholtz instability

  • Authors:
  • J. N. Glosli;D. F. Richards;K. J. Caspersen;R. E. Rudd;J. A. Gunnels;F. H. Streitz

  • Affiliations:
  • Lawrence Livermore National Laboratory, Livermore, CA;Lawrence Livermore National Laboratory, Livermore, CA;Lawrence Livermore National Laboratory, Livermore, CA;Lawrence Livermore National Laboratory, Livermore, CA;IBM Corporation, Yorktown Heights, New York;Lawrence Livermore National Laboratory, Livermore, CA

  • Venue:
  • Proceedings of the 2007 ACM/IEEE conference on Supercomputing
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We report the computational advances that have enabled the first micron-scale simulation of a Kelvin-Helmholtz (KH) instability using molecular dynamics (MD). The advances are in three key areas for massively parallel computation such as on BlueGene/L (BG/L): fault tolerance, application kernel optimization, and highly efficient parallel I/O. In particular, we have developed novel capabilities for handling hardware parity errors and improving the speed of interatomic force calculations, while achieving near optimal I/O speeds on BG/L, allowing us to achieve excellent scalability and improve overall application performance. As a result we have successfully conducted a 2-billion atom KH simulation amounting to 2.8 CPU-millennia of run time, including a single, continuous simulation run in excess of 1.5 CPU-millennia. We have also conducted 9-billion and 62.5-billion atom KH simulations. The current optimized ddcMD code is benchmarked at 115.1 TFlop/s in our scaling study and 103.9 TFlop/s in a sustained science run, with additional improvements ongoing. These improvements enabled us to run the first MD simulations of micron-scale systems developing the KH instability.