Imputation-boosted collaborative filtering using machine learning classifiers

  • Authors:
  • Xiaoyuan Su;Taghi M. Khoshgoftaar;Xingquan Zhu;Russell Greiner

  • Affiliations:
  • Florida Atlantic University, Boca Raton, FL;Florida Atlantic University, Boca Raton, FL;Florida Atlantic University, Boca Raton, FL;University of Alberta, AB, Canada

  • Venue:
  • Proceedings of the 2008 ACM symposium on Applied computing
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

As data sparsity remains a significant challenge for collaborative filtering (CF, we conjecture that predicted ratings based on imputed data may be more accurate than those based on the originally very sparse rating data. In this paper, we propose a framework of imputation-boosted collaborative filtering (IBCF), which first uses an imputation technique, or perhaps machine learned classifier, to fill-in the sparse user-item rating matrix, then runs a traditional Pearson correlation-based CF algorithm on this matrix to predict a novel rating. Empirical results show that IBCF using machine learning classifiers can improve predictive accuracy of CF tasks. In particular, IBCF using a classifier capable of dealing well with missing data, such as naïve Bayes, can outperform the content-boosted CF (a representative hybrid CF algorithm) and IBCF using PMM (predictive mean matching, a state-of-the-art imputation technique), without using external content information.