Multi-dimensional limiting process for three-dimensional flow physics analyses

  • Authors:
  • Sung-Hwan Yoon;Chongam Kim;Kyu-Hong Kim

  • Affiliations:
  • School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea;School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea and Institute of Advanced Aerospace Technology, School of Mechanical and Aerospace Engin ...;School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea

  • Venue:
  • Journal of Computational Physics
  • Year:
  • 2008

Quantified Score

Hi-index 31.47

Visualization

Abstract

The present paper deals with an efficient and accurate limiting strategy for multi-dimensional compressible flows. The multi-dimensional limiting process (MLP) which was successfully proposed in two-dimensional case [K.H. Kim, C. Kim, Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows. Part II: Multi-dimensional limiting process, J. Comput. Phys. 208 (2) (2005) 570-615] is modified and refined for three-dimensional application. For computational efficiency and easy implementation, the formulation of MLP is newly derived and extended to three-dimensional case without assuming local gradient. Through various test cases and comparisons, it is observed that the newly developed MLP is quite effective in controlling numerical oscillation in multi-dimensional flows including both continuous and discontinuous regions. In addition, compared to conventional TVD approach, MLP combined with improved flux functions does provide remarkable increase in accuracy, convergence and robustness in steady and unsteady three-dimensional compressible flows.