Characterizing unstructured overlay topologies in modern P2P file-sharing systems

  • Authors:
  • Daniel Stutzbach;Reza Rejaie;Subhabrata Sen

  • Affiliations:
  • Stutzbach Enterprises, LLC, Dallas, TX;Computer and Information Science Department, University of Oregon, Eugene, OR;AT&T Labs-Research, Florham Park, NJ

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

In recent years, peer-to-peer (P2P) file-sharing systems have evolved to accommodate growing numbers of participating peers. In particular, new features have changed the properties of the unstructured overlay topologies formed by these peers. Little is known about the characteristics of these topologies and their dynamics in modern file-sharing applications, despite their importance. This paper presents a detailed characterization of P2P overlay topologies and their dynamics, focusing on the modern Gnutella network. We present Cruiser, a fast and accurate P2P crawler, which can capture a complete snapshot of the Gnutella network of more than one million peers in just a few minutes, and show how inaccuracy in snapshots can lead to erroneous conclusions--such as a power-law degree distribution. Leveraging recent overlay snapshots captured with Cruiser, we characterize the graph-related properties of individual overlay snapshots and overlay dynamics across slices of back-to-back snapshots. Our results reveal that while the Gnutella network has dramatically grown and changed in many ways, it still exhibits the clustering and short path lengths of a small world network. Furthermore, its overlay topology is highly resilient to random peer departure and even systematic attacks. More interestingly, overlay dynamics lead to an "onion-like" biased connectivity among peers where each peer is more likely connected to peers with higher uptime. Therefore, long-lived peers form a stable core that ensures reachability among peers despite overlay dynamics.