A scalable call admission control algorithm

  • Authors:
  • Zafar Ali;Waseem Sheikh;Edwin K. P. Chong;Arif Ghafoor

  • Affiliations:
  • Cisco Systems, San Jose, CA;School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN;Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO;School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose a scalable algorithm for connection admission control (CAC). The algorithm applies to a Multiprotocol Label Switching (MPLS) ATM switch with a FIFO buffer. The switch carries data from statistically independent variable bit rate (VBR) sources that asynchronously alternate between ON and OFF states with exponentially distributed periods. The sources may be heterogeneous both in terms of their statistical characteristics (peak cell rate, sustained cell rate, and burst size attributes) as well as their Quality of Service (QoS) requirements. The performance of the proposed CAC scheme is evaluated using known performance bounds and simulation results. For the purpose of comparison, we also present scalability analyses for some of the previously proposed CAC schemes. Our results show that the proposed CAC scheme consistently performs better and operates the link close to the highest possible utilization level. Furthermore, the scheme scales well with increasing amount of resources (link capacity and buffer size) and accommodates intelligently the mix of traffic offered by sources of diversed burstiness characteristics.