Finding short lattice vectors within mordell's inequality

  • Authors:
  • Nicolas Gama;Phong Q. Nguyen

  • Affiliations:
  • Ecole normale superieure, INRIA, CNRS, Paris, France;Ecole normale superieure, CNRS, INRIA, Paris, France

  • Venue:
  • STOC '08 Proceedings of the fortieth annual ACM symposium on Theory of computing
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

The celebrated Lenstra-Lenstra-Lovász lattice basis reduction algorithm (LLL) can naturally be viewed as an algorithmic version of Hermite's inequality on Hermite's constant. We present a polynomial-time blockwise reduction algorithm based on duality which can similarly be viewed as an algorithmic version of Mordell's inequality on Hermite's constant. This achieves a better and more natural approximation factor for the shortest vector problem than Schnorr's algorithm and its transference variant by Gama, Howgrave-Graham, Koy and Nguyen. Furthermore, we show that this approximation factor is essentially tight in the worst case.