Detecting energy-greedy anomalies and mobile malware variants

  • Authors:
  • Hahnsang Kim;Joshua Smith;Kang G. Shin

  • Affiliations:
  • The University of Michigan, Ann Arbor, MI, USA;The University of Michigan, Ann Arbor, MI, USA;The University of Michigan, Ann Arbor, MI, USA

  • Venue:
  • Proceedings of the 6th international conference on Mobile systems, applications, and services
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Mobile users of computation and communication services have been rapidly adopting battery-powered mobile handhelds, such as PocketPCs and SmartPhones, for their work. However, the limited battery-lifetime of these devices restricts their portability and applicability, and this weakness can be exacerbated by mobile malware targeting depletion of battery energy. Such malware are usually difficult to detect and prevent, and frequent outbreaks of new malware variants also reduce the effectiveness of commonly-seen signature-based detection. To alleviate these problems, we propose a power-aware malware-detection framework that monitors, detects, and analyzes previously unknown energy-depletion threats. The framework is composed of (1) a power monitor which collects power samples and builds a power consumption history from the collected samples, and (2) a data analyzer which generates a power signature from the constructed history. To generate a power signature, simple and effective noise-filtering and data-compression are applied, thus reducing the detection overhead. Similarities between power signatures are measured by the χ2-distance, reducing both false-positive and false-negative detection rates. According to our experimental results on an HP iPAQ running a Windows Mobile OS, the proposed framework achieves significant (up to 95%) storage-savings without losing the detection accuracy, and a 99% true-positive rate in classifying mobile malware.