Using Entanglement in Quantum Multi-prover Interactive Proofs

  • Authors:
  • Julia Kempe;Hirotada Kobayashi;Keiji Matsumoto;Thomas Vidick

  • Affiliations:
  • -;-;-;-

  • Venue:
  • CCC '08 Proceedings of the 2008 IEEE 23rd Annual Conference on Computational Complexity
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

The central question in quantum multi-prover interactive proof systems is whether or not entanglement shared among provers affects the verification power of the proof system. We study for the first time positive aspects of prior entanglement and show how it can be used to parallelize any multi-prover quantum interactive proof system to a one-round system with perfect completeness, soundness bounded away from 1 by an inverse polynomial in the input size, and one extra prover. Alternatively, we can also parallelize to a three-turn system with the same number of provers, where the verifier only broadcasts the outcome of a coin flip. This "public-coin" property is somewhat surprising, since in the classical case public-coin multi-prover interactive proofs are equivalent to single prover ones.