SOLE: scalable on-line execution of continuous queries on spatio-temporal data streams

  • Authors:
  • Mohamed F. Mokbel;Walid G. Aref

  • Affiliations:
  • Department of Computer Science and Engineering, University of Minnesota, Minneapolis, USA 55455;Department of Computer Science, Purdue University, West Lafayette, USA 47907

  • Venue:
  • The VLDB Journal — The International Journal on Very Large Data Bases
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents the scalable on-line execution (SOLE) algorithm for continuous and on-line evaluation of concurrent continuous spatio-temporal queries over data streams. Incoming spatio-temporal data streams are processed in-memory against a set of outstanding continuous queries. The SOLE algorithm utilizes the scarce memory resource efficiently by keeping track of only the significant objects. In-memory stored objects are expired (i.e., dropped) from memory once they become insignificant. SOLE is a scalable algorithm where all the continuous outstanding queries share the same buffer pool. In addition, SOLE is presented as a spatio-temporal join between two input streams, a stream of spatio-temporal objects and a stream of spatio-temporal queries. To cope with intervals of high arrival rates of objects and/or queries, SOLE utilizes a load-shedding approach where some of the stored objects are dropped from memory. SOLE is implemented as a pipelined query operator that can be combined with traditional query operators in a query execution plan to support a wide variety of continuous queries. Performance experiments based on a real implementation of SOLE inside a prototype of a data stream management system show the scalability and efficiency of SOLE in highly dynamic environments.