Evolutionary algorithm for decryption of monoalphabetic homophonic substitution ciphers encoded as constraint satisfaction problems

  • Authors:
  • David Oranchak

  • Affiliations:
  • NTU School of Engineering and Applied Science, Roanoke, VA, USA

  • Venue:
  • Proceedings of the 10th annual conference on Genetic and evolutionary computation
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

A homophonic substitution cipher maps each plaintext letter of a message to one or more ciphertext symbols [4]. Monoalphabetic homophonic ciphers do not allow ciphertext symbols to map to more than one plaintext letter. Homophonic ciphers conceal language statistics in the enciphered messages, making statistical-based attacks more difficult. We present a dictionary-based attack using a genetic algorithm that encodes solutions as plaintext word placements subjected to constraints imposed by the cipher symbols. We test the technique using a famous cipher (with a known solution) created by the Zodiac serial killer. We present several successful decryption attempts using dictionary sizes of up to 1,600 words.