Double precision geometry: a general technique for calculating line and segment intersections using rounded arithmetic

  • Authors:
  • V. Milenkovic

  • Affiliations:
  • Harvard Univ., Cambridge, MA, USA

  • Venue:
  • SFCS '89 Proceedings of the 30th Annual Symposium on Foundations of Computer Science
  • Year:
  • 1989

Quantified Score

Hi-index 0.00

Visualization

Abstract

For the first time it is shown how to reduce the cost of performing specific geometric constructions by using rounded arithmetic instead of exact arithmetic. By exploiting a property of floating-point arithmetic called monotonicity, a technique called double-precision geometry can replace exact arithmetic with rounded arithmetic in any efficient algorithm for computing the set of intersections of a set of lines or line segments. The technique reduces the complexity of any such line or segment arrangement algorithm by a constant factor. In addition, double-precision geometry reduces by a factor of N the complexity of rendering segment arrangements on a 2/sup N/*2/sup N/ integer grid such that output segments have grid points as endpoints.