Scale-sensitive dimensions, uniform convergence, and learnability

  • Authors:
  • N. Alon;S. Ben-David;N. Cesa-Bianchi;D. Haussler

  • Affiliations:
  • Dept. of Math., Tel Aviv Univ., Israel;-;-;-

  • Venue:
  • SFCS '93 Proceedings of the 1993 IEEE 34th Annual Foundations of Computer Science
  • Year:
  • 1993

Quantified Score

Hi-index 0.00

Visualization

Abstract

Learnability in Valiant's PAC learning model has been shown to be strongly related to the existence of uniform laws of large numbers. These laws define a distribution-free convergence property of means to expectations uniformly over classes of random variables. Classes of real-valued functions enjoying such a property are also known as uniform Gliveako-Cantelli classes. In this paper we prove, through a generalization of Sauer's lemma that may be interesting in its own right, a new characterization of uniform Glivenko-Cantelli classes. Our characterization yields Dudley, Gine, and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a simple combinatorial quantity generalizing the Vapnik-Chervonenkis dimension. We apply this result to characterize PAC learnability in the statistical regression framework of probabilistic concepts, solving an open problem posed by Kearns and Schapire. Our characterization shows that the accuracy parameter plays a crucial role in determining the effective complexity of the learner's hypothesis class.