An empirical study of bandwidth predictability in mobile computing

  • Authors:
  • Jun Yao;Salil S. Kanhere;Mahbub Hassan

  • Affiliations:
  • University of New South Wales, Sydney, Australia;University of New South Wales, Sydney, Australia;University of New South Wales, Sydney, Australia

  • Venue:
  • Proceedings of the third ACM international workshop on Wireless network testbeds, experimental evaluation and characterization
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

While bandwidth predictability has been well studied in static environments, it remains largely unexplored in the context of mobile computing. To gain a deeper understanding of this important issue in the mobile environment, we conducted an eight-month measurement study consisting of 71 repeated trips along a 23Km route in Sydney under typical driving conditions. To account for the network diversity, we measure bandwidth from two independent cellular providers implementing the popular High-Speed Downlink Packet Access (HSDPA) technology in two different peak access rates (1.8 and 3.6Mbps). Interestingly, we observe no significant correlation between the bandwidth signals at different points in time within a given trip. This observation eventually leads to the revelation that the popular time series models, e.g. the Autoregressive and Moving Average, typically used to predict network traffic in static environments are not as effective in capturing the regularity in mobile bandwidth. Although the bandwidth signal in a given trip appears as a random white noise, we are able to detect the existence of patterns by analyzing the distribution of the bandwidth observed during the repeated trips. We quantify the bandwidth predictability reflected by these patterns using tools from information theory, entropy in particular. The entropy analysis reveals that the bandwidth uncertainty may reduce by as much as 46% when observations from past trips are accounted for. We further demonstrate that the bandwidth in mobile computing appears more predictable when location is used as a context. All these observations are consistent across multiple independent providers offering different data transfer rates using possibly different networking hardware.