Wavelet-based image registration technique for high-resolution remote sensing images

  • Authors:
  • Gang Hong;Yun Zhang

  • Affiliations:
  • Department of Geodesy and Geomatics Engineering, University of New Brunswick, NB, Canada;Department of Geodesy and Geomatics Engineering, University of New Brunswick, NB, Canada

  • Venue:
  • Computers & Geosciences
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Image registration is the process of geometrically aligning one image to another image of the same scene taken from different viewpoints at different times or by different sensors. It is an important image processing procedure in remote sensing and has been studied by remote sensing image processing professionals for several decades. Nevertheless, it is still difficult to find an accurate, robust, and automatic image registration method, and most existing image registration methods are designed for a particular application. High-resolution remote sensing images have made it more convenient for professionals to study the Earth; however, they also create new challenges when traditional processing methods are used. In terms of image registration, a number of problems exist in the registration of high-resolution images: (1) the increased relief displacements, introduced by increasing the spatial resolution and lowering the altitude of the sensors, cause obvious geometric distortion in local areas where elevation variation exists; (2) precisely locating control points in high-resolution images is not as simple as in moderate-resolution images; (3) a large number of control points are required for a precise registration, which is a tedious and time-consuming process; and (4) high data volume often affects the processing speed in the image registration. Thus, the demand for an image registration approach that can reduce the above problems is growing. This study proposes a new image registration technique, which is based on the combination of feature-based matching (FBM) and area-based matching (ABM). A wavelet-based feature extraction technique and a normalized cross-correlation matching and relaxation-based image matching techniques are employed in this new method. Two pairs of data sets, one pair of IKONOS panchromatic images from different times and the other pair of images consisting of an IKONOS panchromatic image and a QuickBird multispectral image, are used to evaluate the proposed image registration algorithm. The experimental results show that the proposed algorithm can select sufficient control points semi-automatically to reduce the local distortions caused by local height variation, resulting in improved image registration results.