Generating and drawing area-proportional euler and venn diagrams

  • Authors:
  • Stirling Christopher Chow

  • Affiliations:
  • University of Victoria (Canada)

  • Venue:
  • Generating and drawing area-proportional euler and venn diagrams
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

An Euler diagram C = {c 1, c2, . . . , cn} is a collection of n simple closed curves (i.e., Jordan curves) that partition the plane into connected subsets, called regions, each of which is enclosed by a unique combination of curves. Typically, Euler diagrams are used to visualize the distribution of discrete characteristics across a sample population; in this case, each curve represents a characteristic and each region represents the sub-population possessing exactly the combination of containing curves' properties. Venn diagrams are a subclass of Euler diagrams in which there are 2n regions representing all possible combinations of curves (e.g., two partially overlapping circles). In this dissertation, we study the Euler Diagram Generation Problem (EDGP), which involves constructing an Euler diagram with a prescribed set of regions. We describe a graph-theoretic model of an Euler diagram's structure and use this model to develop necessary-and-sufficient existence conditions. We also use the graph-theoretic model to prove that the EDGP is NP-complete. In addition, we study the related Area-Proportional Euler Diagram Generation Problem (ω-EDGP), which involves constructing an Euler diagram with a prescribed set of regions, each of which has a prescribed area. We develop algorithms for constructing area-proportional Euler diagrams composed of up to three circles and rectangles, as well as diagrams with an unbounded number of curves and a region of common intersection. Finally, we present implementations of our algorithms that allow the dynamic manipulation and real-time construction of area-proportional Euler diagrams.