Fast-Maneuvering Target Seeking Based on Double-Action Q-Learning

  • Authors:
  • Daniel C. Ngai;Nelson H. Yung

  • Affiliations:
  • Department of Electrical & Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong;Department of Electrical & Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

  • Venue:
  • MLDM '07 Proceedings of the 5th international conference on Machine Learning and Data Mining in Pattern Recognition
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, a reinforcement learning method called DAQL is proposed to solve the problem of seeking and homing onto a fast maneuvering target, within the context of mobile robots. This Q-learning based method considers both target and obstacle actions when determining its own action decisions, which enables the agent to learn more effectively in a dynamically changing environment. It particularly suits fast-maneuvering target cases, in which maneuvers of the target are unknown a priori. Simulation result depicts that the proposed method is able to choose a less convoluted path to reach the target when compared to the ideal proportional navigation (IPN) method in handling fast maneuvering and randomly moving target. Furthermore, it can learn to adapt to the physical limitation of the system and do not require specific initial conditions to be satisfied for successful navigation towards the moving target.