A Hybrid Algorithm Based on Evolution Strategies and Instance-Based Learning, Used in Two-Dimensional Fitting of Brightness Profiles in Galaxy Images

  • Authors:
  • Juan Carlos Gomez;Olac Fuentes

  • Affiliations:
  • INAOE, Computer Science Department, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72000, Mexico;University of Texas at El Paso, Computer Science Department, 500 West University Avenue, El Paso 79968, Texas, USA

  • Venue:
  • MLDM '07 Proceedings of the 5th international conference on Machine Learning and Data Mining in Pattern Recognition
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The hybridization of optimization techniques can exploit the strengths of different approaches and avoid their weaknesses. In this work we present a hybrid optimization algorithm based on the combination of Evolution Strategies (ES) and Locally Weighted Linear Regression (LWLR). In this hybrid a local algorithm (LWLR) proposes a new solution that is used by a global algorithm (ES) to produce new better solutions. This new hybrid is applied in solving an interesting and difficult problem in astronomy, the two-dimensional fitting of brightness profiles in galaxy images.The use of standardized fitting functions is arguably the most powerful method for measuring the large-scale features (e.g. brightness distribution) and structure of galaxies, specifying parameters that can provide insight into the formation and evolution of galaxies. Here we employ the hybrid algorithm ES+LWLR to find models that describe the bi-dimensional brightness profiles for a set of optical galactic images. Models are created using two functions: de Vaucoleurs and exponential, which produce models that are expressed as sets of concentric generalized ellipses that represent the brightness profiles of the images.The problem can be seen as an optimization problem because we need to minimize the difference between the flux from the model and the flux from the original optical image, following a normalized Euclidean distance. We solved this optimization problem using our hybrid algorithm ES+LWLR. We have obtained results for a set of 100 galaxies, showing that hybrid algorithm is very well suited to solve this problem.