Input-to-State Stabilization with Quantized Output Feedback

  • Authors:
  • Yoav Sharon;Daniel Liberzon

  • Affiliations:
  • Coordinated Science Laboratory, Department of Electrical Engineering, University of Illinois at Urbana Champaign, Urbana, U.S.A;Coordinated Science Laboratory, Department of Electrical Engineering, University of Illinois at Urbana Champaign, Urbana, U.S.A

  • Venue:
  • HSCC '08 Proceedings of the 11th international workshop on Hybrid Systems: Computation and Control
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study control systems where the output subspace is covered by a finite set of quantization regions, and the only information available to a controller is which of the quantization regions currently contains the system's output. We assume the dimension of the output subspace is strictly less than the dimension of the state space. The number of quantization regions can be as small as 3 per dimension of the output subspace. We show how to design a controller that stabilizes such a system, and makes the system robust to an external unknown disturbance in the sense that the closed-loop system has the Input-to-State Stability property. No information about the disturbance is required to design the controller. Achieving the ISS property for continuous-time systems with quantized measurements requires a hybrid approach, and indeed our controller consists of a dynamic, discrete-time observer, a continuous-time state-feedback stabilizer, and a switching logic that switches between several modes of operation. Except for some properties that the observer and the stabilizer must possess, our approach is general and not restricted to a specific observer or stabilizer. Examples of specific observers that possess these properties are included.