Self-localization Using Odometry and Horizontal Bearings to Landmarks

  • Authors:
  • Matthias Jüngel;Max Risler

  • Affiliations:
  • Humboldt-Universität zu Berlin, Künstliche Intelligenz, Berlin, Germany 10099;Technische Universität Darmstadt, Simulation and Systems Optimization Group, Darmstadt, Germany 64289

  • Venue:
  • RoboCup 2007: Robot Soccer World Cup XI
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

On the way to the big goal - the game against the human world champion on a real soccer field - the configuration of the soccer fields in RoboCup has changed during the last years. There are two main modification trends: The fields get larger and the number of artificial landmarks around the fields decreases. The result is that a lot of the methods for self-localization developed during the last years do not work in the new scenarios without modifications. This holds especially for robots with a limited range of view as the probability for a robot to detect a landmark inside its viewing angle is significantly lower than on the old fields. On the other hand the robots have more space to play and do not collide as often as on the small fields. Thus the robots have a better idea of the courses they cover (odometry has higher reliability). This paper shows a method for self-localization that is based on bearings to horizontal landmarks and the knowledge about the robots movement between the observation of the features.