Efficient Handling of Relational Database Combinatorial Queries Using CSPs

  • Authors:
  • Malek Mouhoub;Chang Feng

  • Affiliations:
  • University of Regina, Regina, Canada S4S 0A2;University of Regina, Regina, Canada S4S 0A2

  • Venue:
  • IEA/AIE '08 Proceedings of the 21st international conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems: New Frontiers in Applied Artificial Intelligence
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

A combinatorial query is a request for tuples from multiple relations that satisfy a conjunction of constraints on tuple attribute values. Managing combinatorial queries using the traditional database systems is very challenging due to the combinatorial nature of the problem. Indeed, for queries involving a large number of constraints, relations and tuples, the response time to satisfy these queries becomes an issue. To overcome this difficulty in practice we propose a new model integrating the Constraint Satisfaction Problem (CSP) framework into the database systems. Indeed, CSPs are very popular for solving combinatorial problems and have demonstrated their ability to tackle, in an efficient manner, real life large scale applications under constraints. In order to compare the performance in response time of our CSP-based model with the traditional way for handling combinatorial queries and implemented by MS SQL Server, we have conducted several experiments on large size databases. The results are very promizing and show the superiority of our method comparing to the traditional one.