Concurrent Computation of Attribute Filters on Shared Memory Parallel Machines

  • Authors:
  • Michael H. F. Wilkinson;Hui Gao;Wim H. Hesselink;Jan-Eppo Jonker;Arnold Meijster

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • IEEE Transactions on Pattern Analysis and Machine Intelligence
  • Year:
  • 2008

Quantified Score

Hi-index 0.14

Visualization

Abstract

Morphological attribute filters have not previously been parallelized, mainly because they are both global and non-separable. We propose a parallel algorithm which achieves efficient parallelism for a large class of attribute filters, including attribute openings, closings, thinnings and thickenings, based on Salembier's Max-Trees and Min-trees. The image or volume is first partitioned in multiple slices. We then compute the Max-trees of each slice using any sequential Max-Tree algorithm. Subsequently, the Max-trees of the slices can be merged to obtain the Max-tree of the image. A C-implementation yielded good speed-ups on both a 16-processor MIPS 14000 parallel machine, and a dual-core Opteron-based machine. It is shown that the speed-up of the parallel algorithm is a direct measure of the gain with respect to the sequential algorithm used. Furthermore, the concurrent algorithm shows a speed gain of up to 72% on a single-core processor, due to reduced cache thrashing.