Java type inference is broken: can we fix it?

  • Authors:
  • Daniel Smith;Robert Cartwright

  • Affiliations:
  • Rice University, Houston, TX, USA;Rice University, Houston, TX, USA

  • Venue:
  • Proceedings of the 23rd ACM SIGPLAN conference on Object-oriented programming systems languages and applications
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Java 5, the most recent major update to the Java Programming Language, introduced a number of sophisticated features, including a major extension to the type system. While the technical details of these new features are complex, much of this complexity is hidden from the typical Java developer by an ambitious type inference mechanism. Unfortunately, the extensions to the Java 5 type system were so novel that their technical details had not yet been thoroughly investigated in the research literature. As a result, the Java 5 compiler includes a pragmatic but flawed type inference algorithm that is, by design, neither sound nor locally complete. The language specification points out that neither of these failures is catastrophic: the correctness of potentially-unsound results must be verified during type checking; and incompleteness can usually be worked around by manually providing the method type parameter bindings for a given call site. This paper dissects the type inference algorithm of Java 5 and proposes a signficant revision that is sound and able to calculate correct results where the Java 5 algorithm fails. The new algorithm is locally complete with the exception of a difficult corner case. Moreover, the new algorithm demonstrates that several arbitrary restrictions in the Java type system---most notably the ban on lower-bounded type parameter declarations and the limited expressibility of intersection types---are unnecessary. We hope that this work will spur the evolution of a more coherent, more comprehensive generic type system for Java.