Measuring saliency of features representing EEG signals using signal-to-noise ratios

  • Authors:
  • Elif Derya íbeyli

  • Affiliations:
  • Department of Electrical and Electronics Engineering, Faculty of Engineering, TOBB Ekonomi ve Teknoloji íniversitesi, 06530 Söğütözü, Ankara, Turkey

  • Venue:
  • Expert Systems with Applications: An International Journal
  • Year:
  • 2009

Quantified Score

Hi-index 12.05

Visualization

Abstract

Various methodologies of automated diagnosis have been adopted, however the entire process can generally be subdivided into a number of disjoint processing modules: pre-processing, feature extraction/selection, and classification. Features are used to represent patterns with minimal loss of important information. The feature vector, which is comprised of the set of all features used to describe a pattern, is a reduced-dimensional representation of that pattern. Medical diagnostic accuracies can be improved when the pattern is simplified through representation by important features. By identifying a set of salient features, the noise in a classification model can be reduced, resulting in more accurate classification. In this study, a signal-to-noise ratio (SNR) saliency measure was employed to determine saliency of input features of probabilistic neural networks (PNNs) used in classification of electroencephalogram (EEG) signals. In order to extract features representing the EEG signals, eigenvector methods were used. The PNNs used in the EEG signals classification were trained for the SNR screening method. The application results of the SNR screening method to the EEG signals demonstrated that classification accuracies of the PNNs with salient input features are higher than that of the PNNs with salient and non-salient input features.