REDUS: finding reducible subspaces in high dimensional data

  • Authors:
  • Xiang Zhang;Feng Pan;Wei Wang

  • Affiliations:
  • University of North Carolina at Chapel Hill, Chapel Hill, NC, USA;University of North Carolina at Chapel Hill, Chapel Hill, NC, USA;University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

  • Venue:
  • Proceedings of the 17th ACM conference on Information and knowledge management
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Finding latent patterns in high dimensional data is an important research problem with numerous applications. The most well known approaches for high dimensional data analysis are feature selection and dimensionality reduction. Being widely used in many applications, these methods aim to capture global patterns and are typically performed in the full feature space. In many emerging applications, however, scientists are interested in the local latent patterns held by feature subspaces, which may be invisible via any global transformation. In this paper, we investigate the problem of finding strong linear and nonlinear correlations hidden in feature subspaces of high dimensional data. We formalize this problem as identifying reducible subspaces in the full dimensional space. Intuitively, a reducible subspace is a feature subspace whose intrinsic dimensionality is smaller than the number of features. We present an effective algorithm, REDUS, for finding the reducible subspaces. Two key components of our algorithm are finding the overall reducible subspace, and uncovering the individual reducible subspaces from the overall reducible subspace. A broad experimental evaluation demonstrates the effectiveness of our algorithm.