Better Binary List-Decodable Codes Via Multilevel Concatenation

  • Authors:
  • Venkatesan Guruswami;Atri Rudra

  • Affiliations:
  • Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195,;Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195,

  • Venue:
  • APPROX '07/RANDOM '07 Proceedings of the 10th International Workshop on Approximation and the 11th International Workshop on Randomization, and Combinatorial Optimization. Algorithms and Techniques
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

We give a polynomial time construction of binary codes with the best currently known trade-off between rate and error-correction radius. Specifically, we obtain linear codes over fixed alphabets that can be list decoded in polynomial time up to the so called Blokh-Zyablov bound. Our work builds upon [7] where codes list decodable up to the Zyablov bound (the standard product bound on distance of concatenated codes) were constructed. Our codes are constructed via a (known) generalization of code concatenation called multilevel code concatenation. A probabilistic argument, which is also derandomized via conditional expectations, is used to show the existence of inner codes with a certain nested list decodability property that is appropriate for use in multilevel concatenated codes. A "level-by-level" decoding algorithm, which crucially uses the list recovery algorithm for folded Reed-Solomon codes from [7], enables list decoding up to the designed distance bound, aka the Blokh-Zyablov bound, for multilevel concatenated codes.