Model-based monitoring for early warning flood detection

  • Authors:
  • Elizabeth A. Basha;Sai Ravela;Daniela Rus

  • Affiliations:
  • Massachusetts Institute of Technology, Cambridge, MA, USA;Massachusetts Institute of Technology, Cambridge, MA, USA;Massachusetts Institute of Technology, Cambridge, MA, USA

  • Venue:
  • Proceedings of the 6th ACM conference on Embedded network sensor systems
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Predictive environmental sensor networks provide complex engineering and systems challenges. These systems must withstand the event of interest, remain functional over long time periods when no events occur, cover large geographical regions of interest to the event, and support the variety of sensor types needed to detect the phenomenon. Prediction of the phenomenon on the network complicates the system further, requiring additional computation on themicrocontrollers and utilizing prediction models that are not typically designed for sensor networks. This paper describes a system architecture and deployment to meet the design requirements and to allow model-driven control, thereby optimizing the prediction capability of the system. We explore the application of river flood prediction using this architecture, describing our work on a centralized form of the prediction model, network implementation, component testing and infrastructure development in Honduras, deployment on a river in Massachusetts, and results of the field experiments. Our system uses only a small number of nodes to cover basins of 1000-10000 square km2 using an unique heterogeneous communication structure to provide real-time sensed data, incorporating self-monitoring for failure, and adapting measurement schedules to capture events of interest.