Geospatial information integration based on the conceptualization of geographic domain

  • Authors:
  • Miguel Torres;Serguei Levachkine;Rolando Quintero;Giovanni Guzmán;Marco Moreno

  • Affiliations:
  • Centre for Computing Research, Mexico City, Mexico;Centre for Computing Research, Mexico City, Mexico;Centre for Computing Research, Mexico City, Mexico;Centre for Computing Research, Mexico City, Mexico;Centre for Computing Research, Mexico City, Mexico

  • Venue:
  • Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic information systems
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Geospatial information integration is not a trivial task. An integrated view must be able to describe various heterogeneous data sources and its interrelation to obtain shared conceptualizations. Up-to-date, there are different and public ontologies for many domains and applications. Ontology engineering is rapidly becoming a mature discipline, which has produced various tools and methodologies for building and managing ontologies. However, even with a clearly defined engineering methodology, building a large ontology remains a challenging, time-consuming and error-prone task, since it forces ontology builders to conceptualize their expert knowledge explicitly and to re-organize it in typical ontological categories such as concepts, properties and axioms. In this paper, an approach to conceptualize the geographic domain is described. As a result of this conceptualization, we propose a semantic method for geospatial information integration. This consists of providing semantic descriptions, which explicitly describe the properties and relations of geographic objects represented by concepts, while the behavior describes the objects semantics. Summing up, this work presents a methodology allowing integrate and share geospatial information. It provides feasible solutions towards these and other related issues such as compact data by alternative structures of knowledge representation and avoids the ambiguity of these terms, using a geographic domain conceptualization. The general vision of the paper is to establish the basis to implement semantic processing oriented to geospatial data. Future works are focused on designing intelligent geographic information systems (iGIS).