A Hypercontractive Inequality for Matrix-Valued Functions with Applications to Quantum Computing and LDCs

  • Authors:
  • Avraham Ben-Aroya;Oded Regev;Ronald de Wolf

  • Affiliations:
  • -;-;-

  • Venue:
  • FOCS '08 Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

The Bonami-Beckner hypercontractive inequality is a powerful tool in Fourier analysis of real-valued functions on the Boolean cube. In this paper we present a version of this inequality for matrix-valued functions on the Boolean cube. Its proof is based on a powerful inequality by Ball, Carlen, and Lieb. We also present a number of applications. First, we analyze maps that encode n classical bits into m qubits, in such a way that each set of k bits can be recovered with some probability by an appropriate measurement on the quantum encoding; we show that if m