Modeling convergent ON and OFF pathways in the early visual system

  • Authors:
  • Tim Gollisch;Markus Meister

  • Affiliations:
  • Max Planck Institute of Neurobiology, Visual Coding Group, Am Klopferspitz 18, 82152, Martinsried, Germany;Harvard University, Department of Molecular and Cellular Biology, Center for Brain Science, 16 Divinity Ave, 02138, Cambridge, MA, USA

  • Venue:
  • Biological Cybernetics - Special Issue: Quantitative Neuron Modeling
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

For understanding the computation and function of single neurons in sensory systems, one needs to investigate how sensory stimuli are related to a neuron’s response and which biological mechanisms underlie this relationship. Mathematical models of the stimulus–response relationship have proved very useful in approaching these issues in a systematic, quantitative way. A starting point for many such analyses has been provided by phenomenological “linear–nonlinear” (LN) models, which comprise a linear filter followed by a static nonlinear transformation. The linear filter is often associated with the neuron’s receptive field. However, the structure of the receptive field is generally a result of inputs from many presynaptic neurons, which may form parallel signal processing pathways. In the retina, for example, certain ganglion cells receive excitatory inputs from ON-type as well as OFF-type bipolar cells. Recent experiments have shown that the convergence of these pathways leads to intriguing response characteristics that cannot be captured by a single linear filter. One approach to adjust the LN model to the biological circuit structure is to use multiple parallel filters that capture ON and OFF bipolar inputs. Here, we review these new developments in modeling neuronal responses in the early visual system and provide details about one particular technique for obtaining the required sets of parallel filters from experimental data.