Unsupervised Classification and Part Localization by Consistency Amplification

  • Authors:
  • Leonid Karlinsky;Michael Dinerstein;Dan Levi;Shimon Ullman

  • Affiliations:
  • Weizmann Institute of Science, Rehovot, Israel 76100;Weizmann Institute of Science, Rehovot, Israel 76100;Weizmann Institute of Science, Rehovot, Israel 76100;Weizmann Institute of Science, Rehovot, Israel 76100

  • Venue:
  • ECCV '08 Proceedings of the 10th European Conference on Computer Vision: Part II
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a novel method for unsupervised classification, including the discovery of a new category and precise object and part localization. Given a set of unlabelled images, some of which contain an object of an unknown category, with unknown location and unknown size relative to the background, the method automatically identifies the images that contain the objects, localizes them and their parts, and reliably learns their appearance and geometry for subsequent classification. Current unsupervised methods construct classifiers based on a fixed set of initial features. Instead, we propose a new approach which iteratively extracts new features and re-learns the induced classifier, improving class vs. non-class separation at each iteration. We develop two main tools that allow this iterative combined search. The first is a novel star-like model capable of learning a geometric class representation in the unsupervised setting. The second is learning of "part specific features" that are optimized for parts detection, and which optimally combine different part appearances discovered in the training examples. These novel aspects lead to precise part localization and to improvement in overall classification performance compared with previous methods. We applied our method to multiple object classes from Caltech-101, UIUC and a sub-classification problem from PASCAL. The obtained results are comparable to state-of-the-art supervised classification techniques and superior to state-of-the-art unsupervised approaches previously applied to the same image sets.