Stabilization of Max-Min Fair Networks without Per-flow State

  • Authors:
  • Jorge A. Cobb;Mohamed G. Gouda

  • Affiliations:
  • Department of Computer Science, The University of Texas at Dallas,;Department of Computer Science, The University of Texas at Austin,

  • Venue:
  • SSS '08 Proceedings of the 10th International Symposium on Stabilization, Safety, and Security of Distributed Systems
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Let a flow be a sequence of packets sent from a source computer to a destination computer. Routers at the core of the Internet do not maintain any information about the flows that traverse them. This has allowed for great speeds at the routers, at the expense of providing only best-effort service. In this paper, we consider the problem of fairly allocating bandwidth to each flow. We assume some flows request a constant amount of bandwidth from the network. The bandwidth that remains is distributed fairly among the rest of the flows. The fairness sought after is max-min fairness, which assigns to each flow the largest possible bandwidth that avoids affecting other flows. The distinguishing factor to other approaches is that routers only maintain a constant amount of state, which is consistent with trends in the Internet (such as the proposed Differentiated Services Internet architecture). In addition, due to the need for high fault-tolerance in the Internet, we ensure our protocol is self-stabilizing, that is, it tolerates a wide variety of transient faults.