Mining Arbitrarily Large Datasets Using Heuristic k-Nearest Neighbour Search

  • Authors:
  • Xing Wu;Geoffrey Holmes;Bernhard Pfahringer

  • Affiliations:
  • Department of Computer Science, University of Waikato, Hamilton, New Zealand;Department of Computer Science, University of Waikato, Hamilton, New Zealand;Department of Computer Science, University of Waikato, Hamilton, New Zealand

  • Venue:
  • AI '08 Proceedings of the 21st Australasian Joint Conference on Artificial Intelligence: Advances in Artificial Intelligence
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Nearest Neighbour Search (NNS) is one of the top ten data mining algorithms. It is simple and effective but has a time complexity that is the product of the number of instances and the number of dimensions. When the number of dimensions is greater than two there are no known solutions that can guarantee a sublinear retrieval time. This paper describes and evaluates two ways to make NNS efficient for datasets that are arbitrarily large in the number of instances and dimensions. The methods are best described as heuristic as they are neither exact nor approximate. Both stem from recent developments in the field of data stream classification. The first uses Hoeffding Trees, an extension of decision trees to streams and the second is a direct stream extension of NNS. The methods are evaluated in terms of their accuracy and the time taken to find the neighbours. Results show that the methods are competitive with NNS in terms of accuracy but significantly faster.