Similarity Invariant Delaunay Graph Matching

  • Authors:
  • Dongjoe Shin;Tardi Tjahjadi

  • Affiliations:
  • School of Engineering, University of Warwick, Coventry, UK CV4 7AL;School of Engineering, University of Warwick, Coventry, UK CV4 7AL

  • Venue:
  • SSPR & SPR '08 Proceedings of the 2008 Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Delaunay tessellation describes a set of arbitrarily distributed points as unique triangular graphs which preserves most local point configuration called a clique regardless of noise addition and partial occlusion. In this paper, this structure is utilised in a matching method and proposed a clique-based Hausdorff Distance (HD) to address point pattern matching problems. Since the proposed distance exploits similarity invariant features extracted from a clique, it is invariant to rotation, translation and scaling. Furthermore, it inherits noise robustness from HD and has partial matching ability because matching performs on local entities. Experimental results show that the proposed method performs better than the existing variants of the general HD.