Proximity Graphs Based Multi-scale Image Segmentation

  • Authors:
  • Alexei N. Skurikhin

  • Affiliations:
  • MS D436, Space and Remote Sensing Group, Los Alamos National Laboratory, Los Alamos, USA 87545

  • Venue:
  • ISVC '08 Proceedings of the 4th International Symposium on Advances in Visual Computing
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a novel multi-scale image segmentation approach based on irregular triangular and polygonal tessellations produced by proximity graphs. Our approach consists of two separate stages: polygonal seeds generation followed by an iterative bottom-up polygon agglomeration. We employ constrained Delaunay triangulation combined with the principles known from visual perception to extract an initial irregular polygonal tessellation of the image. These initial polygons are built upon a triangular mesh composed of irregular sized triangles, whose spatial arrangement is adapted to the image content. We represent the image as a graph with vertices corresponding to the built polygons and edges reflecting polygon relations. The segmentation problem is then formulated as Minimum Spanning Tree (MST) construction. We build a successive fine-to-coarse hierarchy of irregular polygonal partitions by an iterative graph contraction. It uses local information and merges the polygons bottom-up based on local region- and edge- based characteristics.