Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics

  • Authors:
  • Simon Marié;Denis Ricot;Pierre Sagaut

  • Affiliations:
  • Institut Jean le Rond d'Alembert, UMR CNRS 7190, 4 Place Jussieu case 162 Tour 55-65, 75252 Paris Cedex 05, France and Renault Research Departement, TCR AVA 163, 1 avenue du golf, 78288 Guyancourt ...;Renault Research Departement, TCR AVA 163, 1 avenue du golf, 78288 Guyancourt Cedex, France;Institut Jean le Rond d'Alembert, UMR CNRS 7190, 4 Place Jussieu case 162 Tour 55-65, 75252 Paris Cedex 05, France

  • Venue:
  • Journal of Computational Physics
  • Year:
  • 2009

Quantified Score

Hi-index 31.49

Visualization

Abstract

Computational aeroacoustic (CAA) simulation requires accurate schemes to capture the dynamics of acoustic fluctuations, which are weak compared with aerodynamic ones. In this paper, two kinds of schemes are studied and compared: the classical approach based on high order schemes for Navier-Stokes-like equations and the lattice Boltzmann method. The reference macroscopic equations are the 3D isothermal and compressible Navier-Stokes equations. A Von Neumann analysis of these linearized equations is carried out to obtain exact plane wave solutions. Three physical modes are recovered and the corresponding theoretical dispersion relations are obtained. Then the same analysis is made on the space and time discretization of the Navier-Stokes equations with the classical high order schemes to quantify the influence of both space and time discretization on the exact solutions. Different orders of discretization are considered, with and without a uniform mean flow. Three different lattice Boltzmann models are then presented and studied with the Von Neumann analysis. The theoretical dispersion relations of these models are obtained and the error terms of the model are identified and studied. It is shown that the dispersion error in the lattice Boltzmann models is only due to the space and time discretization and that the continuous discrete velocity Boltzmann equation yield the same exact dispersion as the Navier-Stokes equations. Finally, dispersion and dissipation errors of the different kind of schemes are quantitatively compared. It is found that the lattice Boltzmann method is less dissipative than high order schemes and less dispersive than a second order scheme in space with a 3-step Runge-Kutta scheme in time. The number of floating point operations at a given error level associated with these two kinds of schemes are then compared.