Two-dimensional generalisations of dynamic programming for image analysis

  • Authors:
  • C. A. Glasbey

  • Affiliations:
  • Biomathematics and Statistics Scotland, Edinburgh, UK EH9 3JZ

  • Venue:
  • Statistics and Computing
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Dynamic programming (DP) is a fast, elegant method for solving many one-dimensional optimisation problems but, unfortunately, most problems in image analysis, such as restoration and warping, are two-dimensional. We consider three generalisations of DP. The first is iterated dynamic programming (IDP), where DP is used to recursively solve each of a sequence of one-dimensional problems in turn, to find a local optimum. A second algorithm is an empirical, stochastic optimiser, which is implemented by adding progressively less noise to IDP. The final approach replaces DP by a more computationally intensive Forward-Backward Gibbs Sampler, and uses a simulated annealing cooling schedule. Results are compared with existing pixel-by-pixel methods of iterated conditional modes (ICM) and simulated annealing in two applications: to restore a synthetic aperture radar (SAR) image, and to warp a pulsed-field electrophoresis gel into alignment with a reference image. We find that IDP and its stochastic variant outperform the remaining algorithms.