A Secure Information Flow Architecture for Web Service Platforms

  • Authors:
  • Jinpeng Wei;Lenin Singaravelu;Calton Pu

  • Affiliations:
  • Georgia Institute of Technology, Atlanta;VMware Inc.;Georgia Institute of Technology, Atlanta

  • Venue:
  • IEEE Transactions on Services Computing
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Current web service platforms (WSPs) often perform all web services-related processing, including security-sensitive information handling, in the same protection domain. Consequently, the entire WSP may have access to security-sensitive information, forcing us to trust a large and complex piece of software. To address this problem, we propose ISO-WSP, a new information flow architecture that decomposes current WSPs into a small trusted T-WSP to handle security-sensitive data and a large, legacy untrusted U-WSP that provides the normal WSP functionality. To achieve end-to-end security, the application code is also decomposed into a small trusted part and the remaining untrusted code. The trusted part encapsulates all accesses to security-sensitive data through a Secure Functional Interface (SFI). To ease the migration of legacy applications to ISO-WSP, we developed tools to translate direct manipulations of security-sensitive data by the untrusted part into SFI invocations. Using a prototype implementation based on the Apache Axis2 WSP, we show that ISO-WSP reduces software complexity of trusted components by a factor of five, while incurring a modest performance overhead of few milliseconds per request. We also show that existing applications can be migrated to run on ISO-WSP with a few tens of lines of new and modified code.