Analysis of scalar fields over point cloud data

  • Authors:
  • Frédéric Chazal;Leonidas J. Guibas;Steve Y. Oudot;Primoz Skraba

  • Affiliations:
  • INRIA, ORSAY, France;Stanford University, Stanford, CA;INRIA, ORSAY, France;Stanford University, Stanford, CA

  • Venue:
  • SODA '09 Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Given a real-valued function f defined over some metric space X, is it possible to recover some structural information about f from the sole information of its values at a finite set L ⊆ X of sample points, whose pairwise distances in X are given? We provide a positive answer to this question. More precisely, taking advantage of recent advances on the front of stability for persistence diagrams, we introduce a novel algebraic construction, based on a pair of nested families of simplicial complexes built on top of the point cloud L, from which the persistence diagram of f can be faithfully approximated. We derive from this construction a series of algorithms for the analysis of scalar fields from point cloud data. These algorithms are simple and easy to implement, have reasonable complexities, and come with theoretical guarantees. To illustrate the generality of the approach, we present some experimental results obtained in various applications, ranging from clustering to sensor networks (see the electronic version of the paper for color pictures).