Five-axis tool path generation for a flat-end tool based on iso-conic partitioning

  • Authors:
  • Nan Wang;Kai Tang

  • Affiliations:
  • Department of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong, China;Department of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong, China

  • Venue:
  • Computer-Aided Design
  • Year:
  • 2008

Quantified Score

Hi-index 0.01

Visualization

Abstract

Traditionally, for the flat-end tool, due to the intertwined dependence relationship between its axis and reference point, most 5-axis tool-path generation algorithms take a decoupled two-stage strategy: first, the so-called cutter contact (CC) curves are placed on the part surface; then, for each CC curve, tool orientations are decided that will accommodate local and/or global constraints such as minimum local gouging and global collision avoidance. For the former stage, usually simplistic ''offset'' methods are adopted to determine the cutter contact curves, such as the iso-parametric or iso-plane method; whereas for the latter, a common practice is to assign fixed tilt and yaw angle to the tool axis regardless the local curvature information and, in the case of considering global interference, the tool orientation is decided solely based on avoiding global collision but ignoring important local machining efficiency issues. This independence between the placement of CC curves and the determination of tool orientations, as well as the rigid way in which the tilt and yaw angle get assigned, incurs many undesired problems, such as the abrupt change of tool orientations, the reduced efficiency in machining, the reduced finishing surface quality, the unnecessary dynamic loading on the machine, etc. In this paper, we present a 5-axis tool-path generation algorithm that aims at alleviating these problems and thus improving the machining efficiency and accuracy. In our algorithm, the CC curves are contour lines on the part surface that satisfy the iso-conic property - the surface normal vectors on each CC curve fall on a right small circle on the Gaussian sphere, and the tool orientations associated to a CC curve are determined by the principle of minimum tilt (also sometimes called lead) angle that seeks fastest cutting rate without local gouging. Together with an elaborate scheme for determining the step-over distance between adjacent CC curves that seeks maximum material removal, the presented algorithm offers some plausible advantages over most existing 5-axis tool-path generation algorithms, particularly in terms of reducing the angular velocity and acceleration of the rotary axes of the machine. The simulation experiments of the proposed algorithm and their comparison with a leading commercial CAM software toolbox are also provided that demonstrate the claimed advantages.