Automated reaction mapping

  • Authors:
  • John D. Crabtree;Dinesh P. Mehta

  • Affiliations:
  • University of North Alabama;Colorado School of Mines

  • Venue:
  • Journal of Experimental Algorithmics (JEA)
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

Automated reaction mapping is a fundamental first step in the analysis of chemical reactions and opens the door to the development of sophisticated chemical kinetic tools. This article formulates the reaction mapping problem as an optimization problem. The problem is shown to be NP-Complete for general graphs. Five algorithms based on canonical graph naming and enumerative combinatoric techniques are developed to solve the problem. Unlike previous formulations based on limited configurations or classifications, our algorithms are uniquely capable of mapping any reaction that can be represented as a set of chemical graphs optimally. This is due to the direct use of Graph Isomorphism as the basis for these algorithms as opposed to the more commonly used Maximum Common Subgraph. Experimental results on chemical and biological reaction databases demonstrate the efficiency of our algorithms.