DTSMA: Distributed time-spread multiple access for wireless mesh networks with IEEE 802.16d MAC protocol

  • Authors:
  • Peng-Yong Kong;Inn-Inn Er

  • Affiliations:
  • Institute for Infocomm Research, Agency for Science, Technology and Research (ASTAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore;Institute for Infocomm Research, Agency for Science, Technology and Research (ASTAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore

  • Venue:
  • Computer Networks: The International Journal of Computer and Telecommunications Networking
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper studies the use of IEEE 802.16d mesh MAC protocol for multi-hop networking in an indoor domestic environment. The mesh network is expected to support time-sensitive audio-video applications with stringent QoS requirement. In the literature, time-spread multiple access (TSMA) is a promising technology to provide a minimum throughput guarantee in a multi-hop mesh network with dynamic topology. However, existing TSMA schemes require the number of nodes in the entire network and their global maximum node degree, be known a priori to a central controller. The requirement is not practical. In view of this problem, this paper proposes a distributed time-spread multiple access (DTSMA) scheme. The proposed DTSMA has the following main contributions: (a) A method for each node to determine locally its polynomial coefficients without a priori global knowledge of node number and maximum node degree, and (b) A method to distribute to neighbours the locally determined polynomial coefficients, and to resolve collision between two sets of identical polynomial coefficients from two neighbouring nodes. The proposed DTSMA has been evaluated through extensive simulations to confirm that it can indeed preserve the capability of providing a minimum throughput guarantee in the absence of the a priori global knowledge. In benchmark against the de facto distributed coordinated scheduling (DCS) in the original IEEE 802.16d mesh MAC protocol under various domestic wireless channel conditions, DTSMA outperforms in terms of packet delivery ratio and average end-to-end packet delay which are important metrics for time-sensitive audio-video applications. Simulation results also show that DTSMA outperforms TSMA in terms of average end-to-end packet delay and average delay jitter when the severity of propagation impairment is high.