On the Algorithmic Effectiveness of Digraph Decompositions and Complexity Measures

  • Authors:
  • Michael Lampis;Georgia Kaouri;Valia Mitsou

  • Affiliations:
  • City University of New York,;National Technical University of Athens,;City University of New York,

  • Venue:
  • ISAAC '08 Proceedings of the 19th International Symposium on Algorithms and Computation
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We place our focus on the gap between treewidth's success in producing fixed-parameter polynomial algorithms for hard graph problems, and specifically Hamiltonian Circuit and Max Cut, and the failure of its directed variants (directed tree-width [9], DAG-width [11] and kelly-width [8]) to replicate it in the realm of digraphs. We answer the question of why this gap exists by giving two hardness results: we show that Directed Hamiltonian Circuit is W[2]-hard when the parameter is the width of the input graph, for any of these widths, and that Max Di Cut remains NP-hard even when restricted to DAGs, which have the minimum possible width under all these definitions. Our results also apply to directed pathwidth.