Simulating pandemic influenza preparedness plans for a public university: a hierarchical system dynamics approach

  • Authors:
  • Tim Lant;Megan Jehn;Cody Christensen;Ozgur M. Araz;John W. Fowler

  • Affiliations:
  • Arizona State University, Tempe, AZ;Arizona State University, Tempe, AZ;Arizona State University, Tempe, AZ;Arizona State University, Tempe, AZ;Arizona State University, Tempe, AZ

  • Venue:
  • Proceedings of the 40th Conference on Winter Simulation
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Pandemic influenza preparedness plans strongly focus on efficient mitigation strategies including social distancing, logistics and medical response. These strategies are formed by multiple decisions-makers before pandemic outbreak and during the disaster by decision makers in local communities, states and nationwide. Depending on the community that will be affected by pandemic influenza, different strategies should be employed to decrease the severity of the disaster in multiple dimensions of social life. In this paper, a system dynamics methodology is applied to model the population behaviors and the effects of pandemic influenza on a public university community. The system is simulated for multiple non-pharmaceutical interventions with several policies that can be employed by local decision makers. System components are constructed from the pandemic influenza preparedness plan of one of the largest universities in the country. The policies and the decisions are tested by simulation runs and evaluations of the mitigation strategies are presented.